
An Architecture for Standardized Terminology Services 
by Wrapping and Integration of Existing Applications 

Ronald Cornet MSc, Antoon K. Prins MSc 
Dept. of Medical Informatics, Academic Medical Center, University of Amsterdam 

Amsterdam, The Netherlands 
 

ABSTRACT 
Research on terminology services has resulted in 
development of applications and definition of 
standards, but has not yet led to widespread use of 
(standardized) terminology services in practice. 
Current terminology services offer functionality both 
for concept representation and lexical knowledge 
representation, hampering the possibility of 
combining the strengths of dedicated (concept and 
lexical) services. We therefore propose an extensible 
architecture in which concept-related and lexicon-
related components are integrated and made 
available through a uniform interface. This interface 
can be extended in order to conform to existing 
standards, making it possible to use dedicated (third-
party) components in a standardized way. As a proof 
of concept and a reference implementation, a SOAP-
based Java implementation of the terminology 
service is being developed, providing wrappers for 
Protégé and UMLS Knowledge Source Server. Other 
systems, such as the Description Logic-based 
reasoner RACER can be easily integrated by 
implementation of an appropriate wrapper. 
 

INTRODUCTION 
During the last decade, standards have been proposed 
for providing terminology services. Despite the 
emergence of these standards, implementations 
thereof have not yet come to fruition. Currently 
existing applications for browsing terminological 
systems are dedicated to one system, such as 
SNOMED or GALEN, often in a manner where the 
functionality is integrated with a particular user-
interface. In order to make terminological systems 
and the related functionality more exchangeable, we 
define a client-server based architecture. In order for 
the server to be generically useable, it has to provide 
a standardized interface that clients can use to 
provide functionality to users. We will discuss issues 
that need to be addressed with respect to such an 
interface. Finally, we will describe a modular, 
layered approach for a terminology server, based on 
reuse of existing special-purpose applications, 
providing their functionality in a generalized manner. 
 

BACKGROUND 
The department of Medical Informatics at the 
University of Amsterdam performs ongoing research 

and development on terminological systems and 
services. This has lead to development of a 
terminological system on Reasons for Admission in 
Intensive Care, called DICE 1, 2, representing 
concepts in both Dutch and English. The main 
reasons for development of this system were the need 
for a terminology that supports semantic definitions 
of concepts, and assignment of multiple synonymous 
Dutch terms to these concepts. 
To facilitate knowledge modeling and terminology-
based registration, a terminology server for this 
system has been developed, together with clients for 
modeling and browsing. This implementation has 
various limitations, impeding the generic usability of 
the applications. The terminology server (written in 
Java) implements Remote Method Invocation (RMI), 
a protocol requiring clients to be written in Java as 
well. The storage format (serialization) of both the 
concept knowledge and the lexical knowledge is also 
Java-specific, making it difficult to exchange data 
with other systems. User evaluations have 
demonstrated that language-processing features 
should be enhanced to better fit the users’ needs, for 
example to construct a concept from a detailed 
natural language expression entered by a user. 
Finally, as we aim at supporting advanced reasoning 
by deploying the powers of Description Logic-based 
reasoners, we want to incorporate such a reasoner 
into the terminology service.  
 
Client/Server Terminology Implementations 
The plea for a client-server-based approach for 
terminology services is not new. Already in the early 
nineties of the last century, the GALEN project 
aimed at development of “a terminology server to 
manage language-independent shared systems of 
concepts for clinical applications” 3. This project has 
led to development of a terminology server (ROIS), 
which is currently used at a number of sites. Around 
the same time, UMLS released the Knowledge 
Source Server 4, which provides both a web-based 
interface and an API (Application Programming 
Interface) to retrieve the Metathesaurus and Semantic 
Network information from the UMLS server by 
means of a number of methods. Some other 
terminology servers have become available since, 
such as DTS (Distributed Terminology Server), “the 
Apelon server software for viewing and/or using 



published terminologies through an API” 5, and the 
CIC Look Up Engine (CLUE), “an API that makes it 
easy to use the power of Version 3 of the NHS 
Clinical Terms and SNOMED”6.  
 
Standards for Terminology Services 
Besides the development of applications, definition 
of standardized interfaces for terminology servers has 
been a research issue. A variety of such standards 
currently exist, of which some have led to actual 
implementations. The first effort to come to a 
standard for terminology services was the 
Terminology Query Services (TQS) specification 7. 
This specification defines an extensive API for 
querying a terminology server, in which thirteen 
modules that can be distinguished. Apart from a 
reference implementation, OpenEMed 8, no 
implementations of TQS are known to the authors. 
A different approach is taken in the definition of the 
Terminology Query Language (TQL), “a declarative, 
set-based query language built on a generic entity-
relationship schema”9. It uses SQL-like queries to 
retrieve data from a terminology server, which is 
returned in XML format. There is an Open Source 
implementation of TQL: jTerm10. 
Currently, another standard is being developed within 
the HL7 consortium, the Common Terminology 
Services (CTS) specification, that “identifies the 
common functional characteristics that an external 
terminology must be able to provide”11. A notable 
difference between CTS and the other specifications 
is that CTS does not specify how the service is to be 
implemented. 
This non-exhaustive enumeration of standards shows 
that there is a great variety in proposed and 
implemented ways to provide terminology services. It 
also demonstrates how some implementations 
provide multiple ways of interfacing, for example the 
UMLS KSS, which provides both a socket-based 
implementation and a Java client API on top of that. 
 

COMPONENTS 
As much as the various standards and 
implementations differ in their choices for protocols, 
platforms, and paradigms, they agree on the core 
components that constitute a terminological system: 
they all have notion of a “concept representation” 
(concepts) and “linguistic designation” (terms). There 
is a range of other possible elements of a 
terminological system, such as a coding scheme, or 
context management. 
Although “concept representation” and “linguistic 
designation” are common in all specifications for 
terminology services, the formalisms on which these 
are based vary. As a consequence, there are 
differences in the provided (or proposed) 

functionality, as some functionality is dependent on 
the underlying representation formalism. We will 
focus on the concept representation formalism and 
the linguistic designations to provide insight in the 
implications of different formalisms. 
 
Concept Representation Formalisms 
Concept representation formalisms can be 
categorized as those without support for universal 
and automic reasoning, such as frames and entity-
relationship models, and those with support for 
automated reasoning, most notably Description 
Logic-based representation. In fields varying from 
applied science to mathematics, research is ongoing 
to increase the understanding and utilization of these 
formalisms. Similar to the research on terminology 
services, applications are being developed to exploit 
the merits that the formalisms provide, and standards 
are being defined. Probably the best-known example 
of an application based on frames-representation is 
Protégé12, which provides an application for 
knowledge acquisition as well as an API to directly 
manipulate a frame-based knowledge base. An 
example of a standard for addressing frame-based 
applications is OKBC (Open Knowledge Base 
Connectivity)13, which however has not been used in 
many applications. 
Description Logics form the basis for a variety of 
reasoners, which over time have been capable of 
dealing with more and more expressive logics. 
FaCT14 and RACER15 are two examples of reasoners 
that support reasoning with very expressive logics. 
Realizing the need for increased interchangeability, 
the DL community has initiated definition of a web-
based standard for accessing DL-based knowledge 
representation systems, named DIG16, as a successor 
of KRSS (Knowledge Representation System 
Specification)17. 
 
Natural Language Representation 
Whereas the concept representation is essential for 
classification and computerized manipulation of 
concepts by providing semantics to a concept, a 
natural language representation is crucial for dealing 
with language as used in everyday practice. It is a 
basis for the support of tasks such as recognition and 
generation of lexical variants, spelling variants, and 
synonyms. A major example of a system that 
provides such information for medical terms is the 
UMLS SPECIALIST Lexicon with accompanying 
tools18. A general system is WordNet, which has 
words “organized into synonym sets, each 
representing one underlying lexical concept”19. No 
standards for such systems are known to the authors. 
 



INTEGRATED TERMINOLOGY SERVICES 
In spite of the advancing expertise in concept and 
lexical representation, the generated knowledge and 
applications are rarely combined in currently existing 
implementations. Moreover, the introduction of new 
insights and methods is hampered by the necessity to 
implement them into existing terminological systems. 
We therefore define an architecture in which existing 
components, such as the ones mentioned earlier, can 
be integrated. In this way terminology services will 
be able to keep pace with the ongoing developments 
in various fields. Besides, the use of already existing 
concept and lexical models will be easier, if the 
related application can be integrated. The 
architecture, depicted in Figure 1, defines four layers.  
Third-Party Applications. These are both the 
concept knowledge representation systems, such as 
Protégé, FaCT or RACER, and the lexical knowledge 
representation systems, such as the UMLS 
SPECIALIST Lexicon. 
Application Wrappers. In order to be able to 
integrate a range of applications into a terminology 
service, interfaces are defined to provide the third-
party applications with a standardized interface. 

Examples of methods involving concept 
representation are “checkSubsumption” and “get-
Parents”.  Examples of lexical queries are 
“getPreferredTerm” and “normalizeString”. 

Concept 
Knowledge based 

System 

Lexical 
Knowledge based 

System 

Systemization Lexis 

Terminology Service 

Third party 
Application 
Tier 

Application-
specific 
wrapper 
Tier 

Application 
Integration 
Tier 
 

... 

... 

Standard /  
Protocol 
Tier 
 

SOAP 
Terminology Service 

TQL / TQS / CTS 
Terminology Service 

... 
Terminology Service 

Protégé RACER SPECIALIST 
Lexicon 

WordNet 

Figure 1:  A Multi-tier Architecture for Terminology Services. Dedicated (third-party) applications (examples 
are given, printed in Italics) are wrapped to provide them with a standardized interface. Various 
modules are integrated into the Terminology Service, which can be equipped with a standardized, 
protocol specific interface. 

Application Integration. The terminology service 
brings together functionality and data from the 
various applications, interrelating them. For example, 
terms are related to concepts, and codes can be 
provided for concepts. More advanced functionality 
is described in more detail below. 
Standards and Protocols. As the process of defining 
standards for terminology services is still ongoing, 
standards are separated from the integration tier, so 
that a terminology service can be delivered with one 
or more appropriate standards and protocols.  
 
Interfaces 
The divergent functionality of similar systems is a 
complicating factor in our approach, but inevitably 
needs to be overcome. For example, a Frame-based 
knowledge representation system offers different 
functionality than a Description Logic-based system, 
such as interrogation of frames to retrieve their 
properties, versus inferred classification for DL-



based concepts. Two measures are taken to deal with 
these disparities. First, a mechanism that is also used 
in TQS is adopted, where methods defined in the 
wrappers can throw a “not implemented” exception. 
Hence, a relatively extensive set of methods can be 
defined in the interfaces of the wrappers, without the 
necessity that third-party applications actually 
provide all functionality. 
On the other hand it is likely that third-party 
applications will provide functionality that is useful 
to some clients, although it is not part of the common 
functionality of a terminology service. To address 
these native functions, applications send a “native” 
request to the terminology service, specifying the 
requested application, method, and parameters. The 
terminology service then delegates this request to the 
appropriate application-specific wrapper, in which 
the method is defined. In this way, flexibility is 
provided, but on the cost of not allowing complex 
data types for parameters and return values. 
 
Extended Terminology Services 
This architecture not only aims at integration of 
terminology services, but also at extending the 
functionality. An example of such an extension is a 
method comparable to the TQS method 
‘get_entity_graph’, that returns a graph 
representation of a part of the hierarchy held in the 
concept knowledge representation system. Whereas 
for example Protégé provides a “genHierarchy” 
method to provide this kind of functionality, for other 
systems it might be necessary to recursively iterate 
subclasses to generate a representation of the 
hierarchy. The terminology service can provide this 
functionality either by using the first method of the 
wrapper (comparable to genHierarchy) or, if this 
method is not implemented in a wrapper, by recursive 
retrieval of subclasses.   
 

REFERENCE IMPLEMENTATION 
Currently, the implementation of the described 
architecture is ongoing. We focus on implementation 
of a SOAP-based interface on a Java terminology 
server, providing services in a web-based fashion. 
Wrappers are implemented as Java classes that 
implement the proper interfaces. For the purpose of 
demonstration, and in order to ease migration of 
DICE to this new architecture, we are implementing 
wrappers for the concept and lexical knowledge base 
of DICE. Besides, we will develop a wrapper for the 
Description Logic reasoner RACER 15 that will be 
used to enhance reasoning capabilities of the 
terminology service. This process not only aims at 
actual implementation, but also as a proof of concept 
of this architecture, and as a means for furthering the 

specification of the interfaces of the wrappers and the 
terminology service itself. 
Figure 2 shows an example of the flow of requests 
being performed by the terminology service. A client 
sends a SOAP request to the terminology service, 
which delegates various parts of the request. It first 
retrieves a tree representation from the Protégé 
wrapper, which queries Protégé for a part of the 
hierarchy. The received concept identifiers are 
mapped to KSS LUIs (Lexical Unique IDs) by means 
of an internal mapping table. These LUIs are sent to 
KSS to retrieve the terms from the UMLS 
Knowledge Source Server.  

Figure 2: UML Sequence Diagram representing 
interaction between Client, Server and Third-party 
Applications (Protégé and UMLS Knowledge Source 
Server). Wrappers are shown in gray. The SOAP 
interface to the terminology service is not represented 

FURTHER RESEARCH 
The focus for the architecture has been on querying 
the terminology service, as is the focus of the 
currently existing standards. We foresee that 
modeling can also be made possible through the 
architecture by extending the interface. An important 
issue to be addressed when loosely coupling 
terminological resources is consistency, as the 
modification of one knowledge base (e.g. concept 
knowledge) may require an update of any related 
knowledge base (e.g. lexical knowledge). 
Another issue that will be explored further is the 
standardization of components for clients. Currently, 
development of a client requires implementation of 
functionality that will largely be common, but of 
which the presentation is depending on the platform 
and paradigm of the client application. To make 
development of terminology clients easier, methods 
that represent data in a way closely related to the 



required presentation will be implemented in the 
terminology service. 
 

CONCLUSIONS 
We suggest a new approach in providing terminology 
services. Current efforts have been focusing either on 
development of complete terminology solutions, or 
only on parts of the constituent elements of 
terminology services. As the latter have come up with 
solutions that are thoroughly studied in the fields 
from which they originate, we strive at employing 
their individual strengths. Three issues have been 
addressed to realize this. The first issue is the use of 
wrappers in order to standardize the communication 
with dedicated (third-party) applications, overcoming 
the lack of implemented standards for such systems. 
The second issue is that of integration, both of data 
and functionality of the concept and the lexical 
knowledge based system. Thirdly, pending the 
development of a commonly accepted standardized 
interface for terminology services, multiple interfaces 
can be defined, for protocols such as SOAP or 
CORBA. 
Work on a reference implementation is ongoing, 
demonstrating the feasibility of the architecture. This 
implementation provides a SOAP interface to a Java 
implementation of the terminology service. Wrappers 
for Protégé and RACER will enable use of both a 
frame-based and Description Logic based concept 
knowledge representation system. Wrappers for the 
in-house developed DICE system will increase the 
usability of DICE for various purposes. Overall, this 
architecture will increase interchangeability of 
knowledge-based systems, third-party applications 
and terminology clients. 
 
Acknowledgements 
This research is supported by the NICE Foundation 
and the Dutch Ministry of Health, Welfare and Sport. 
 

References 
1. de Keizer NF, Abu-Hanna A, Cornet R. 

Evaluation of DICE, a terminological system for 
intensive care. Stud Health Technol Inform 
2000;77:208-12. 

2. de Keizer NF, Stoutenbeek CP, de Jonge E, 
Timmers T, Zwetsloot-Schonk JHM. An 
intensive care diagnosis classification supporting 
the care process and quality assurance. In: 
MedInfo 1998; 1998; Seoul, Korea; 1998. 

3. Rector AL, Solomon WD, Nowlan WA, Rush 
TW, Zanstra PE, Claassen WM. A Terminology 
Server for medical language and medical 
information systems. Methods Inf Med 
1995;34(1-2):147-57. 

4. McCray AT, Razi AM, Bangalore AK, Browne 
AC, Stavri PZ. The UMLS Knowledge Source 
Server: a versatile Internet-based research tool. 
Proc AMIA Annu Fall Symp 1996:164-8. 

5. Apelon website, http://www.apelon.com/, Last 
Accessed: 2003, June 27th 

6. CLUE website, http://www.clinical-
info.co.uk/clue.htm, Last Accessed: 2003, June 
27th 

7. OMG. Lexicon Query Service Specification: 
Object Management Group; 2000 july 2000. 
Report No.: 00-06-31.pdf. 

8. OpenEMed website, http://openemed.net/, Last 
Accessed: 2003, June 27th 

9. Hogarth MA, Gertz M, Gorin FA. Terminology 
Query Language: a server interface for concept-
oriented terminology systems. Proc AMIA Symp 
2000:349-53. 

10. jTerm website, 
http://termserver.cs.ucdavis.edu/jterm/index.html
, Last Accessed: 2003, June 27th 

11. CTS Specification Version 0.8, 
http://www.hl7.org/Library/Committees/vocab/C
TSSpecv08.zip, Last Accessed: 2003, February 
24th 

12. Gennari JH, Musen MA, Fergerson RW, Grosso 
WE, Crubézy M, Eriksson H, et al. The 
Evolution of Protégé: An Environment for 
Knowledge-Based Systems Development. 
International Journal of Human-Computer 
Interaction 2002;58(1):89-123. 

13. OKBC website, http://www.ai.sri.com/~okbc/, 
Last Accessed: 2003, June 27th 

14. Horrocks I, Sattler U, Tobies S. Practical 
reasoning for very expressive description logics. 
Logic Journal of the IGPL 2000;8(3):239-63. 

15. Haarslev V, Möller R. High Performance 
Reasoning with Very Large Knowledge Bases. 
In: International Workshop in Description 
Logics 2000 (DL2000); 2000; Aachen, 
Germany; 2000. 

16. Bechhofer S. The DIG Description Logic 
Interface: DIG/1.0. Manchester: University of 
Manchester; 2002 October 1st, 2002. 

17. Patel-Schneider P, Swartout B. Description-
Logic Knowledge Representation System 
Specification from the KRSS Group of the 
ARPA Knowledge Sharing Effort; 1993 1 
november 1993. 

18. McCray AT. The nature of lexical knowledge. 
Methods Inf Med 1998;37(4-5):353-60. 

19. WordNet website, 
http://www.cogsci.princeton.edu/~wn/, Last 
Accessed: 2003, June 27th 

 

http://www.apelon.com/
http://www.clinical-info.co.uk/clue.htm
http://www.clinical-info.co.uk/clue.htm
http://openemed.net/
http://termserver.cs.ucdavis.edu/jterm/index.html
http://www.hl7.org/Library/Committees/vocab/CTSSpecv08.zip
http://www.hl7.org/Library/Committees/vocab/CTSSpecv08.zip
http://www.ai.sri.com/~okbc/
http://www.cogsci.princeton.edu/~wn/

	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: AMIA 2003 Symposium Proceedings − Page 180
	02: AMIA 2003 Symposium Proceedings − Page 181
	03: AMIA 2003 Symposium Proceedings − Page 182
	04: AMIA 2003 Symposium Proceedings − Page 183
	05: AMIA 2003 Symposium Proceedings − Page 184


